JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

(Registered in U. S. Patent Office) (C) Copyright, 1961, by the American Chernical Society)

PHYSICAL AND INORGANIC CHEMISTRY

[Contribution from the Chemistry Department, University of Maryland, College Park, Maryland]

The Kinetics of Three-step Competitive Consecutive Second-order Reactions. II ${ }^{1.2}$

By W. J. Svirbely and Jay A. Blauer
Received May 4, 1961

The rate equations for a three-step competitive consecutive second-order reaction of the type $\mathrm{A}+\mathrm{B} \xrightarrow{k_{1}} \mathrm{C}+\mathrm{E}, \mathrm{A}+$ $\mathrm{C} \xrightarrow{k_{2}} \mathrm{D}+\mathrm{E}, \mathrm{A}+\mathrm{D} \xrightarrow{k_{3}} \mathrm{~F}+\mathrm{E}$ has been solved in terms of a variable λ where $\lambda=\int_{0}^{\mathrm{t}} A \mathrm{~d} t$. When $A_{0}=3 B_{0}$, the solution is $A=G_{1} e^{-k_{1} \lambda}+G_{2} e^{-k_{2} \lambda}+G_{3} e^{-k_{3} \lambda}$ where G_{1}, G_{2} and G_{3} are constants involving various combinations of k_{1}, k_{2}, k_{3} and B_{0}. Taylor's theorem was used to expand the function A about the first approximations of k_{1}, k_{2} and $k_{8}\left(i . e ., 0 k_{1}, 0 k_{2}\right.$ and $\left.0 k_{3}\right)$. If all higher order partials are neglected, then the equation in A becomes; $A=f\left(0 k_{1},{ }^{0} k_{2},{ }^{0} k_{3}\right)+\left.\frac{\partial f}{\partial k_{1}}\right|_{0} \Delta k_{1}+\left.\frac{\partial f}{\partial k_{2}}\right|_{0} \Delta k_{2}+$ $\frac{\partial f}{\partial k_{3,0}} \Delta k_{3}$. The problem of evaluating $\Delta k_{1}, \Delta k_{2}$ and Δk_{3} was accomplished by a least squares solution utilizing all experimental time-concentration data. An iterative procedure was developed for carrying out the operations on the I.B.M. 704 electronic computer. On multiplying the equation for A by $e^{k_{1 \lambda} \lambda}$, differentiating the resulting equation and repeating the process using $e^{k_{2} \lambda}$ and $e^{k_{3} \lambda}$ successively, a third order differential equation in A and λ was obtained which, after several successive integrations, leads to: $A-A_{0}+\left(k_{1}+k_{2}+k_{3}\right) A^{*}+\left(k_{1} k_{3}+k_{2} k_{3}+k_{1} k_{2}\right) A^{* *}+k_{1} k_{2} k_{3} A^{* * *}=\left(1 / 2 k_{1} k_{2}+\right.$ $\left.k_{1} k_{3}+3 / 2 k_{2} k_{3}\right) \lambda^{2} B_{0}+\left(2 k_{1}+3 k_{2}+3 k_{3}\right) \lambda B_{0}$ where $A^{*}=\int_{0}^{\lambda} A \mathrm{~d} \lambda, A^{* *}=\int_{0}^{\lambda} A^{*} \mathrm{~d} \lambda, A^{* * *}=\int_{0}^{\lambda} A^{* *} \mathrm{~d} \lambda$. Taylor's theorem was used to expand this function of A about first approximations of k_{1}, k_{2} and k_{3} and an iterative procedure was developed to solve for $\Delta k_{1}, \Delta k_{2}$ and Δk_{3} utilizing all experimental time-concentration data.

Introduction

Recently, ${ }^{3}$ the kinetics of three-step competitiveconsecutive second-order reactions was investigated mathematically in terms of general variables which in principle would apply to any reaction of that kinetic type. The resulting analysis was applied to the alkaline hydrolysis of $1,3,5$-tri-(4 -carbomethoxyphenyl)-benzene which, because of its size and corresponding absence of interaction between the carbomethoxy groups, led to the result that the rate constants are in the statistical ratio $k_{1}: k_{2}: k_{3}=3: 2: 1$. However, the above procedure becomes too involved to be practical when there is no criterion for determining beforehand what relationship, if any, exists between k_{2} and k_{3} for a particular reaction. This is the situation which exists when interaction between groups does occur or when the k 's for a given
(1) Abstracted from a thesis submitted by Jay A. Blauer to the Graduate School of the University of Maryland in partial fulfilment of the requirements for the degree of Doctor of Philosophy.
(2) Presented in part at the New York City Meeting of the American Chemical Society, September, 1960.
(3) (a) W, J. Svirbely, J. Am. Chem. Soc., 81, 255 (1959); (b) W. J. Svirbely and H. E. Weisberg, ibid., 81, 257 (1959).
reaction vary as the result of changing the solvent composition. Therefore, it becomes necessary for us to reconsider the problem and see whether a more practical solution can be obtained.

Mathematical Analysis

The reactions to be considered are

$$
\begin{aligned}
& \mathrm{A}+\mathrm{B} \xrightarrow{k_{1}} \mathrm{C}+\mathrm{F} \\
& \mathrm{~A}+\mathrm{C} \xrightarrow{k_{2}} \mathrm{D}+\mathrm{F} \\
& \mathrm{~A}+\mathrm{D} \xrightarrow{k_{3}} \mathrm{E}+\mathrm{F}
\end{aligned}
$$

The pertinent rate equations for the above steps in terms of the molar concentrations A, B, C and D are

$$
\begin{gather*}
\frac{\mathrm{d} A}{\mathrm{~d} t}=-k_{1} A B-k_{2} A C-k_{3} A D \tag{1}\\
\frac{\mathrm{~d} B}{\mathrm{~d} t}=-k_{1} A B \tag{2}\\
\frac{\mathrm{~d} C}{\mathrm{~d} t}=k_{1} A B-k_{2} A C \tag{3}\\
\frac{\mathrm{~d} D}{\mathrm{~d} t}=k_{2} A C-k_{3} A D \tag{4}\\
\frac{\mathrm{~d} E}{\mathrm{~d} t}=k_{3} A D \tag{5}
\end{gather*}
$$

Let us define a new variable, λ, so that

$$
\begin{equation*}
\lambda=\int_{0}^{\mathrm{t}} A \mathrm{~d} t \tag{6}
\end{equation*}
$$

it follows then that

$$
\begin{equation*}
\mathrm{d} \lambda=A \mathrm{~d} t \tag{7}
\end{equation*}
$$

On substituting equation 7 into equations 1 through 5 , we obtain equations $8,9,10,11$ and 12 .

$$
\begin{gather*}
\frac{\mathrm{d} A}{\mathrm{~d} \lambda}=-k_{1} B-k_{2} C-k_{3} D \tag{8}\\
\frac{\mathrm{~d} B}{\mathrm{~d} \lambda}=-k_{1} B \tag{9}\\
\frac{\mathrm{~d} C}{\mathrm{~d} \lambda}=k_{1} B-k_{2} C \tag{10}\\
\frac{\mathrm{~d} D}{\mathrm{~d} \lambda}=k_{2} C-k_{3} D \tag{11}\\
\frac{\mathrm{~d} E}{\mathrm{~d} \lambda}=k_{3} D \tag{12}
\end{gather*}
$$

Equations 9, 10, 11 and 8 are integrated in that order. Constants of integration are evaluated in each appropriate case from the boundary conditions, which are: $\lambda=C=D$ $=0, A=A_{0}$, and $B=B_{0}$ at $t=0$. If the initial concentrations of species A and B are adjusted so that $A_{0}=3 B_{0}$, then one obtains

$$
\begin{array}{r}
\stackrel{A}{B_{0}}=\left[3+\frac{2 k_{1}}{\left(k_{2}-k_{1}\right)}+\frac{k_{1} k_{2}}{\left(k_{2}-k_{1}\right)\left(k_{3}-k_{1}\right)}\right] e^{-k_{1} \lambda}- \\
\\
{\left[\frac{2 k_{1}}{\left(k_{2}-k_{1}\right)}+\frac{k_{1} k_{2}}{\left(k_{2}-k_{1}\right)\left(k_{3}-k_{2}\right)}\right] e^{-k_{2} \lambda}+} \tag{13}\\
\\
{\left[\frac{k_{1} k_{2}}{\left(k_{3}-k_{1}\right)\left(k_{3}-k_{2}\right)}\right] e^{-k_{5} \lambda}}
\end{array}
$$

While we now have a solution for A in terms of the rate constants, it is in an impossible form for the direct evaluation of the rate constants. Ultimately, three different procedures were developed (two of which are described).

Method 1.-On rewriting equation 13 for simplification only, equation 14 is obtained

$$
\begin{equation*}
S=G_{1} e^{-k_{1} \lambda}+G_{2} e^{-k_{2 \lambda} \lambda}+G_{3} e^{-k_{8} \lambda} \tag{14}
\end{equation*}
$$

The definitions of S, G_{1}, G_{2} and G_{3} are obvious on reference to equation 13. If we let ${ }^{0} k_{1}, 0 k_{2}$ and ${ }^{0} k_{3}$ be a set of initial estimates of the actual rate constants k_{1}, k_{2} and k_{3}, equation 13 may be expanded about these initial estimates via a Taylor's series expansion to give

$$
\begin{align*}
& S=S\left.\right|_{0}+\left.\frac{\partial S}{\partial k_{1}}\right|_{0}\left(k_{1}-{ }^{0} k_{1}\right)+ \\
&\left.\frac{\partial S}{\partial k_{2}}\right|_{0}\left(k_{2}-{ }^{0} k_{2}\right)+ \tag{15}\\
&\left.\frac{\partial S}{\partial k_{3}}\right|_{0}\left(k_{3}-{ }^{0} k_{3}\right)+H
\end{align*}
$$

$\left.S\right|_{0}$ is the value of A / B_{0} calculated via equation 13 when ${ }^{0} k_{1},{ }^{0} k_{2}$ and ${ }^{0} k_{3}$ are substituted for the actual rate constants k_{1}, k_{2} and k_{3}. $\partial S /\left.\partial k_{1}\right|_{0}, \partial S /\left.\partial k_{2}\right|_{0}$ and $\partial S /\left.\partial k_{3}\right|_{0}$ are the partial derivatives of A / B_{0} with respect to the three rate constants. These partial derivatives are evaluated from equation 13 when the rate constants k_{1}, k_{2} and k_{3} are replaced by the estimates ${ }^{0} k_{1}, 0 k_{2}$ and ${ }^{0} k_{3}$. H represents all higher order partial derivatives. On neglecting H and replacing ($k_{1}-{ }^{0} k_{1}$), $\left(k-0 k_{2}\right)$ and $\left(k_{3}-0 k_{3}\right)$ by $\Delta k_{1}, \Delta k_{2}$ and Δk_{3}, equation 15 becomes

$$
\begin{equation*}
S-\left.S\right|_{0}=\left.\frac{\partial S}{\partial \dot{k}_{1}}\right|_{0} \Delta k_{1}+\left.\frac{\partial S}{\partial k_{2}}\right|_{0} \Delta k_{2}+\left.\frac{\partial S}{\partial k_{3}}\right|_{0} \Delta k_{3} \tag{16}
\end{equation*}
$$

In the evaluation of $\partial S /\left.\partial k_{1}\right|_{0}$, differentiation of equation 14 with respect to k_{1} y ields

$$
\begin{align*}
& \frac{\partial S}{\partial \tilde{k}_{1}}=\left(\frac{\partial G_{1}}{\partial k_{1}}-G_{1} \lambda\right) e^{-k_{1} \lambda}+ \\
&\left(\frac{\partial G_{2}}{\partial k_{1}}\right) e^{-k_{2} \lambda}+\left(\frac{\partial G_{3}}{\partial k_{1}}\right) e^{-k_{8} \lambda} \tag{17}
\end{align*}
$$

On differentiating the definitions of G_{1}, G_{2} and G_{3}, one obtains

$$
\begin{equation*}
\frac{\partial G_{1}}{\partial k_{1}}=\left[\frac{k_{2}\left(k_{3}-k_{1}\right)^{2}+k_{2} k_{3}\left(k_{2}+k_{3}-2 k_{1}\right)}{\left(k_{2}-k_{1}\right)^{2}\left(k_{3}-k_{1}\right)^{2}}\right] \tag{18}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\partial G_{2}}{\partial k_{1}}=\left[\frac{k_{2}\left(k_{2}-2 k_{2}\right)}{\left(k_{2}-k_{1}\right)^{2}\left(k_{3}-k_{2}\right)}\right] \tag{19}\\
& \frac{\partial G_{3}}{\partial k_{1}}=\left[\frac{k_{2} k_{3}}{\left(k_{2}-k_{1}\right)^{2}\left(k_{3}-k_{2}\right)}\right] \tag{20}
\end{align*}
$$

The value of $\partial S_{1} /\left.\partial k_{1}\right|_{0}$ for each experimental value of A is determined from equation 17 on using the corresponding experimentally determined value of λ and the outstanding estimates ${ }^{0} k_{1},{ }^{0} k_{2}$ and ${ }^{0} k_{3}$ of the rate constants k_{1}, k_{2} and k_{3}.

Similarly one obtains equations for evaluating $\left.\frac{\partial S}{\partial k_{2}}\right|_{0}$ and $\left.\frac{\partial S}{\partial k_{3}}\right|_{0}$.
The problem now becomes one of the evaluation of Δk_{1}, Δk_{2} and Δk_{3}. Once these values have been obtained, the first estimates ${ }^{0} k_{1},{ }^{0} k_{2}$ and ${ }^{0} k_{3}$ may be corrected for the error terms and the process repeated with new estimates of k_{1}, k_{2} and k_{8}. As the process is repeated the Δk_{1} terms will become increasingly smaller. In the evaluation of equation 16 , we are solving for the three unknowns $\Delta k_{1}, \Delta k_{2}$ and Δk_{3}. Therefore, we need at least three simultaneous equations, i.e., three different sets of values of A and λ. The values of λ are obtained from the graphical integration of an $A v s . t$ plot. Actually a run may provide as many as 15 experimental points, i.e., 15 sets of values of A and λ. The problem therefore becomes one of using all fifteen equations in the total solution for $\Delta k_{1}, \Delta k_{2}$ and Δk_{3}.

The solution of equation 16 for the correction terms is accomplished by the method of least squares using all fifteen equations. For simplification, we make the following definitions

$$
\begin{gather*}
J=S-\left.S\right|_{0} \tag{21}\\
X_{1}=\left.\frac{\partial S}{\partial k_{1}}\right|_{0} \tag{22}\\
X_{2}=\left.\frac{\partial S}{\partial k_{2}}\right|_{0} \tag{23}\\
X_{3}=\frac{\partial S}{\partial k_{3}}{ }_{0} \tag{24}
\end{gather*}
$$

On substituting these definitions into equation 16 , we obtain

$$
\begin{equation*}
J=X_{1} \Delta k_{1}+X_{2} \Delta k_{2}+X_{3} \Delta k_{3} \tag{25}
\end{equation*}
$$

The system of determinants arising from the solution of equation 25 is

$$
\left|\begin{array}{l}
\Sigma J X_{1} \tag{26}\\
\Sigma J X_{2} \\
\Sigma J X_{3}
\end{array}\right|=\left\lvert\, \begin{array}{lll}
\Sigma X_{1}^{2} & \Sigma X_{1} X_{2} & \Sigma X_{1} X_{3} \\
\Sigma X_{2} X_{1} & \Sigma X_{2}^{2} & \Sigma X_{2} X_{3} \\
\Sigma X_{2} X_{1} & \Sigma X_{3} X_{2} & \Sigma X_{3}^{2}
\end{array}\right.
$$

The iterative procedure described above was programmed for the use of an IBM 704 electronic computer.

Reference to equation 13 shows that if any two of the three rate constants are identical then equation 13 will fail to describe the data since two of the coefficients of the exponentials become indeterminate. As a result, the iterative procedure just described will fail. Such situations actually existed in some of our experimental work on the alkaline hydrolysis of $1,3,5$-tricarbomethoxybenzene in low dielectric media. Accordingly, another procedure is required. This new procedure is described in method $\# 2$.
Method 2.-Start with equation 13 and for simplification write it as

$$
\begin{equation*}
A=G_{1}{ }^{*} e^{-k_{1} \lambda}+G_{2}{ }^{*} e^{-k_{2} \lambda}+G_{3}{ }^{*} e^{-k_{2} \lambda} \tag{27}
\end{equation*}
$$

In equation 27 we have redefined $G_{1} B_{0}, G_{2} B_{0}$ and $G_{3} B_{0}$ as $\mathrm{G}_{1}{ }^{*}, G_{2}{ }^{*}$ and $G_{3}{ }^{*}$, respectively.
Úpon multiplying equation 27 by $e^{k_{1 \lambda}}$ and then differentiating the resulting equation with respect to λ, we obtain
$\frac{\mathrm{d} A}{\mathrm{~d} \lambda}+k_{1} A=G_{2}^{*}\left(k_{1}-k_{2}\right) e^{-k_{2} \lambda}+G_{3}^{*}\left(k_{1}-k_{3}\right) e^{-k_{3} \lambda}$
Two repetitions of the above process of multiplication and subsequent differentiation using, however, $e^{k_{2} \lambda}$ and $e^{k_{3} \lambda}$ successively as multipliers leads to equation 29, namely
$\frac{\mathrm{d}^{3} A}{\mathrm{~d} \lambda^{3}}+\left(k_{1}+k_{2}+k_{3}\right) \frac{\mathrm{d}^{2} A}{\mathrm{~d} \lambda^{2}}+$
$\left(k_{1} k_{2}+k_{1} k_{3}+k_{2} k_{3}\right) \frac{\mathrm{d} A}{\mathrm{~d} \lambda}+k_{1} k_{2} k_{3} A=0$

For simplification we write equation 29 as

$$
\begin{equation*}
\frac{\mathrm{d}^{3} A}{\mathrm{~d} \lambda^{3}}+J_{1} \frac{\mathrm{~d}^{2} A}{\mathrm{~d} \lambda^{2}}+J_{2} \frac{\mathrm{~d} A}{\mathrm{~d} \lambda}+J_{3} A=0 \tag{30}
\end{equation*}
$$

On multiplying equation 30 by $\mathrm{d} \lambda$ and then integrating between limits, we obtain

$$
\begin{align*}
\int_{0}^{\lambda} \frac{\mathrm{d}^{3} A}{\mathrm{~d} \lambda^{3}} \mathrm{~d} \lambda+J_{1} & \int_{0}^{\lambda} \frac{\mathrm{d}^{2} \cdot A}{\mathrm{~d} \lambda^{2}} \mathrm{~d} \lambda+ \\
& J_{2} \int_{0}^{\lambda} \frac{\mathrm{d} A}{\mathrm{~d} \lambda} \mathrm{~d} \lambda+J_{0} \int_{0}^{\lambda} A \mathrm{~d} \lambda=0 \tag{31}
\end{align*}
$$

The reduction of equation 31 leads to

$$
\begin{align*}
& \frac{\mathrm{d}^{2} A}{\mathrm{~d} \lambda^{2}}+J_{1} \frac{\mathrm{~d} A}{\mathrm{~d} \lambda}+J_{2} A+J_{3} \int_{0}^{\lambda} A \mathrm{~d} \lambda= \\
& \left.\quad \frac{\mathrm{d}^{2} A}{\mathrm{~d} \lambda^{2}}\right|_{0}+\left.J_{1} \frac{\mathrm{~d} A}{\mathrm{~d} \lambda}\right|_{0}+J_{2} A_{0} \tag{32}
\end{align*}
$$

The complete solution of equation 32 requires an evaluation of the limits $\left.\frac{\mathrm{d}^{2} A}{\mathrm{~d} \lambda_{2}}\right|_{0}$ and $\left.\frac{\mathrm{d} A}{\mathrm{~d} \lambda}\right|_{0}$. If the kinetic run is designed so that at $\lambda=0 ; C=D=0$ and $B=B_{0}$; then a $\lambda=0$, equation 8 reduces to

$$
\begin{equation*}
\left.\frac{\mathrm{d} .4}{\mathrm{~d} \lambda}\right|_{0}=-k_{\mathrm{r}} B_{\mathrm{v}} \tag{33}
\end{equation*}
$$

The differentiation of equation 8 with respect to λ and the substitution of equations 9,10 and 11 into the resulting equation leads to equation 34 when $\lambda=0$.

$$
\begin{equation*}
\left.\frac{\mathrm{d}^{2} A}{\mathrm{~d} \bar{\lambda}^{2}}\right|_{0}=\left(k_{1}{ }^{2}-k_{1} k_{2}\right) B_{0} \tag{34}
\end{equation*}
$$

On the substitution of the limits defined by equations 33 and 34 into equation 32 , one obtains an equation which in turn can be integrated. The process is repeated once more and equation (35) is obtained.

$$
\begin{align*}
& A-A_{0}+J_{1} A^{*}+J_{2} A^{* *}+J_{3} \cdot 4^{* * *}= \\
& J_{4} / 2 \lambda^{2}+J_{5} \lambda \tag{35}
\end{align*}
$$

where

$$
\begin{aligned}
A^{*} & =\int_{0}^{\lambda} A \mathrm{~d} \lambda ; A^{* *}=\int_{0}^{\lambda} A^{*} \mathrm{~d} \lambda ; A^{* * *}=\int_{0}^{\lambda} A^{* *} \mathrm{~d} \lambda \\
J_{4} & =k_{1} k_{2} B_{0}+2 k_{1} k_{3} B_{0}+3 k_{2} k_{3} B_{0} \\
J_{5} & =2 k_{1} B_{0}+3 k_{2} B_{0}+3 k_{3} B_{0}
\end{aligned}
$$

Although equation 35 involves four graphical integrations, it does have an advantage over equation 13 . It will not break down if any two rate constants are equal. Equation 35 offers a means by which the rate constants may be evaluated by a method of least squares without the use of an iterative procedure. However, such a procedure is possible only with the aid of an electronic computer. Since we wished to use a method adaptable to a desk calculator, we developed a satisfactory solution for equation 35 through use of an iterative procedure.

For simplification, equation $3 \overline{5}$ is rewritten as equation 36 , namely

$$
\begin{equation*}
S=J_{1} X_{1}+J_{2} X_{2}+J_{3} X_{3}-\frac{J_{4}}{2} X_{4}-J_{5} X_{5} \tag{36}
\end{equation*}
$$

where
$S=A_{0}-A ; \quad X_{1}=A^{*} ; \quad X_{2}=$

$$
A^{* *} ; X_{3}=A^{* * *} ; X_{4}=\lambda^{2} ; X_{5}=\lambda
$$

Equation 36 may be expanded about first estimates of the three rate constants by means of Taylor's theorem. The starting equation is thus equation 37 , namely

$$
\begin{equation*}
S-\left.S\right|_{0}=\left.\frac{\partial S}{\partial k_{1}}\right|_{0} \Delta k_{1}+\left.\frac{\partial S}{\partial k_{2}}\right|_{0} \Delta k_{2}+\left.\frac{\partial S}{\partial k_{3}}\right|_{0} \Delta k_{3} \tag{37}
\end{equation*}
$$

$\left.S\right|_{0}$ is the value of S evaluated by substituting values of X_{1}, $X_{2}, X_{3}, X_{4}, X_{5}$ and the estimates ${ }^{0} k_{1}, 0 k_{2}$ and ${ }^{0} k_{8}$ into equation 36. $\left.\frac{\partial S}{\partial k_{1}}\right|_{0},\left.\frac{\partial S}{\partial k_{2}}\right|_{0}$ and $\left.\frac{\partial S}{\partial k_{3}}\right|_{0}$ are the values of $\frac{\partial S}{\partial k_{1}}, \frac{\partial S}{\partial k_{2}}$ and $\frac{\partial S}{\partial k_{3}}$ evaluated from equation 36 using the estimates ${ }^{0} k_{1},{ }^{0} k_{2}$, ${ }^{0} k_{3}$ in place of the actual rate constants. $\Delta k_{1}, \Delta k_{2}$ and Δk_{a} are the correction terms to be added to the estimates ${ }^{0} k_{1}, 0 k_{2}$ and ${ }^{0} k_{z}$ to obtain an improved set of estimates. A11
higher order partials are neglected. The solution is a threedimensional iteration. The solution of equation 37 is by the method of least squares. The partial derivatives must be evaluated for each datum point and have the following defnitions (only $\left.\frac{\partial S}{\partial k_{1}}\right|_{0}$ is given, the other two are obtained in a similar fashion)

$$
\begin{align*}
\left.\frac{\partial S}{\partial k_{1}}\right|_{0}=\left.\frac{\partial J}{\partial k_{1}}\right|_{0} X_{1}+\left.\frac{\partial J_{2}}{\partial k_{1}}\right|_{0} & X_{2}+\left.\frac{\partial J_{3}}{\partial k_{1}}\right|_{v} \\
& X_{3}- \tag{37}\\
& \left.\frac{1}{2} \frac{\partial J_{4}}{\partial \dot{k}_{1}}\right|_{0} X_{4}-\left.\frac{\partial J_{5}}{\partial k_{1}}\right|_{0} X_{5}
\end{align*}
$$

Three equations involving $\left.\frac{\partial S}{\partial k_{1}}\right|_{0},\left.\frac{\partial S}{\partial \tilde{k}_{2}}\right|_{0}$ and $\left.\frac{\partial S}{\partial \bar{k}_{3}}\right|_{0}$ have fifteen constants of the form $\left.\frac{\partial J_{1}}{\partial k_{j}}\right|_{0}$. These constants must be evaluated. These constants are defined as
$\left.\frac{\partial J_{1}}{\partial k_{1}}\right|_{0}=\left.1.0000 \quad \frac{\partial J_{1}}{\partial k_{2}}\right|_{0}=\left.1.0000 \quad \frac{\partial J_{1}}{\partial k_{3}}\right|_{0}=1.0000$
$\left.\frac{\partial J_{2}}{\partial k_{1}}\right|_{0}={ }^{0} k_{2}+\left.{ }^{0} k_{3} \quad \frac{\partial J_{2}}{\partial k_{2}}\right|_{0}={ }^{0} k_{1}+\left.{ }^{0} k_{3} \quad \frac{\partial J_{2}}{\partial k_{3}}\right|_{0}={ }^{0} k_{1}+{ }^{0} k_{2}$
$\left.\frac{\partial J_{3}}{\partial k_{1}}\right|_{0}=\left.{ }^{0} k_{2}{ }^{0} k_{3} \quad \frac{\partial J_{3}}{\partial k_{2}}\right|_{0}=\left.{ }^{0} k_{1}{ }^{0} k_{3} \quad \frac{\partial J_{3}}{\partial \xi_{3}}\right|_{0}={ }^{0} k_{1}{ }^{0} k_{2} \quad(38)$
$\left.\frac{\partial J_{4}}{\partial \bar{k}_{1}}\right|_{0}=\left.\left(\begin{array}{ll}0 k_{2}\end{array} 2^{0} k_{3}\right) B_{0} \quad \frac{\partial J_{4}}{\partial k_{2}}\right|_{0}=\left({ }^{0} k_{1}+3 k_{3}\right) B_{0}$
$\left.\frac{\partial J_{5}}{\partial k_{1}}\right|_{0}=2 B_{0}$
For simplification we made the following definitions

$$
\begin{align*}
& R_{1}=\left.\frac{\partial S}{\partial k_{1}}\right|_{0} \tag{39}\\
& R_{2}=\left.\frac{\partial S}{\partial k_{2}}\right|_{0} \tag{40}\\
& R_{3}=\left.\frac{\partial S}{\partial k_{3}}\right|_{0} \tag{41}\\
& H=S-S_{0} \tag{42}
\end{align*}
$$

Equation 37 now becomes

$$
\begin{equation*}
H=R_{1} \Delta k_{1}+R_{2} \Delta k_{2}+R_{3} \Delta k_{3} \tag{43}
\end{equation*}
$$

The system of determinants arising from the solution of equation 43 is

$$
\left|\begin{array}{c}
\Sigma H R_{1} \tag{44}\\
\Sigma H R_{2} \\
\Sigma H R_{3}
\end{array}\right|=\left|\begin{array}{lll}
\Sigma R_{1}^{2} & \Sigma R_{1} R_{2} & \Sigma R_{1} R_{3} \\
\Sigma R_{2} R_{1} & \Sigma R_{2}^{2} & \Sigma R_{2} R_{3} \\
\Sigma R_{3} R_{1} & \Sigma R_{3} R_{2} & \Sigma R_{3}^{2}
\end{array}\right|
$$

Discussion

The application of both methods to the alkaline hydrolysis of $1,3,5$-tricarbomethoxybenzene is given in another paper. However, it is appropriate to show in this paper the validity of the analysis leading to equation 13 and the subsequent testing of the programming developed for Method 1.

In the special case where the relationship between the three rate constants is purely statistical, i.e., in which $k_{1}=3 / 2 k_{2}=3 k_{3}$, the rate equation ${ }^{3}$ reduces to

$$
\begin{equation*}
\frac{A_{0}-A}{A A_{0}}=\frac{k_{2}}{2} t=k_{3} t \tag{45}
\end{equation*}
$$

On solving equation 45 for A, one obtains

$$
\begin{equation*}
A=\frac{A_{0}}{1+k_{3} A_{0} t} \tag{46}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\int_{0}^{\lambda} A \mathrm{~d} t=\int_{0}^{\lambda} \frac{A_{0} \mathrm{~d} t}{1+k_{3} A_{0} t}=\frac{1}{k_{3}} \ln \left(1+A_{0} k_{3} t\right) \tag{47}
\end{equation*}
$$

Through use of equation 6 , equation 47 becomes

$$
\begin{equation*}
\lambda=\frac{1}{k_{3}} \ln \left(1+k_{3} A_{0} t\right) \tag{48}
\end{equation*}
$$

A combination of equations 46 and 48 leads to eq. 49

$$
\begin{equation*}
k_{3} \lambda=\ln \frac{A_{0}}{A} \tag{49}
\end{equation*}
$$

On assigning values to the constants A_{0} and k_{3}, we may arbitrarily generate a test set of A values for various times t through use of equation 46 . This test set of A values can be used to generate a test set of λ values through use of equation 49 . Both sets of test values are independent of any equations derived in this paper and apply to the situation where the rate constants are in the ratio of $k_{1}: k_{2}: k_{3}=3: 2: 1$.

On assigning a value of 6.51 to k_{3} and 0.03000 to A_{0}, values of λ and A were generated and are listed in Table I. Also listed in Table I, column 3, are the values of A later calculated using the values of k_{1}, k_{2} and k_{3} generated by the iterative procedure. The initial estimates of the three rate constants and the values given by the iterative procedure are summarized below Table I. The iteration was stopped when Δk_{1} became smaller than 1% of the outstanding value of k_{1}. Three cycles through the iterative procedure were required in this test case. Close estimates of the rate constants were chosen as a measure of economy. The calculations were done by an IBM-704 electronic computer.
In the application to experimental data, initial estimates of k_{1} were found by plotting A vs. λ and estimating the slope at $\lambda=0$ in accordance with the equation 33. If k_{3} is much smaller than both k_{1} and k_{2}, equation 14 reduces to equation 50 for large values of λ

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty} A / B_{0}=G_{3} e^{-k_{3} \lambda} \tag{50}
\end{equation*}
$$

The logarithmic form of equation 50 is

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty}\left(\log \frac{A}{B_{0}}\right)=\log G_{3}-\frac{k_{3}}{2.303} \lambda \tag{51}
\end{equation*}
$$

The initial estimates of k_{3} were found by plotting $\log A v s . \lambda$ and estimating the slope at large values of λ. The initial estimates of k_{2} were found by

Table I
Fit of the Test Data as Calculated by the Machine Iteration

A. mole min./1.	A, mole $/ 1$.	$A_{\text {calce. }}$ mole/l.	$A-A_{\text {caled. }}$ mole $/ 1$.
0.01437	0.0273 .3	0.02732	0.000010
.03909	.02325	.02325	.0000000
.06226	.01999	.01999	.0000000
.08034	.01777	.01777	.000000
.09959	.01567	.01567	.000000
.11689	.01400	.01400	.000000
.12590	.01320	.01320	.000000
.15239	.01111	.01111	.000000
.20914	.007672	.007671	.000001
.26716	.005256	.005256	.000000
.33698	.003333	.003335	-.000002
k_{i}	Actual value	Initial estimate	Calcd. value
k_{1}	19.53	20.0	19.53
k_{3}	13.02	15.0	13.07
k_{3}	6.51	6.5	6.51

simply guessing the values, it being assumed that $k_{3}<k_{2}<k_{1}$.

Our experience is that the iterative procedure will not converge unless the estimate ${ }^{0} k_{3}$ is within 100% of the actual value of k_{3}, whereas ${ }^{\circ} k_{2}$ and ${ }^{0} k_{1}$ can be at variance more than 300% from the actual values of k_{1} and k_{2}. Furthermore, we observed that in duplicate runs, reproducible values for k_{3} will result only if the reaction is carried out until the plot of $\log A$ vs. λ approaches linearity. This usually occurred at about 75% completion of the reaction.
Acknowledgments. - We wish to express our deep appreciation to Dr. Karl L. Stellmacher for his aid in obtaining the solution given by equation 13 , to Mr. Michael Rowan for programming the solution for evaluation on an electronic computer, to the Naval Ordnance Laboratory for allowing us to use their facilities and to the General Research Board of the University of Maryland for a grant applicable to the cost of programming and computer time.
[Contribution from the Chemistry Department, University of Maryland, College Park, Maryland]

The Kinetics of the Alkaline Hydrolysis of 1,3,5-Tricarbomethoxybenzene ${ }^{1,2}$

By W. J. Svirbel.y and Jay A. Bladeer
Received May 4, 1961

The three step alkaline hydrolysis of $1,3,5$-tricarbomethoxybenzene has been studied in dioxane-water mixtures over a temperature range. The three rate constants have been determined using procedures developed for the determination of the rate constants for a three-step consecutive-competitive second-order reaction involving a symmetrical molecule where there may be interaction among the reaction sites. The various thermodynamic activation values have been calculated. The data have been examined statistically for their significance. It was observed that the k_{2} / k_{3} ratio approached unity in the low dielectric media. The experimental observations can be explained on the basis of the formation of ion-pairs or aggregates.

Introduction

A recent ${ }^{3}$ study of the alkaline hydrolysis of 1,3,5-tri-(4-carbomethoxyphenyl)-benzene showed

[^0] Graduate School of the University of Maryland in partial fulfillment of the requirements for the degree of Doctor of Philosophy.
that under the conditions of the experiment, i.e. dielectric constant ~ 9, the ratio of the rate con-

[^1]
[^0]: (1) Abstracted from a thesis submitted by Jay A. Blauer to the

[^1]: (2) Presented in part at the New York City Meeting of the American Chemical Society. September, 1960.
 (3) W. J. Svirbely and H. E. Weisberg. J. Am. Chem. Soc., 81, 257 (1959).

